Summary of Draft EE/CA for the Upper Reach of the Housatonic River

Presentation to the Citizens Coordinating Council Pittsfield, Massachusetts 1 March 2000

Joel S. Lindsay, PE, LSP EE/CA Lead Author Roy F. Weston, Inc.

Overview of Presentation

- Site Investigation Activities
- Removal Action Objectives
- Extent of Removal and Estimated Removal Quantities
- Technologies Screening and Options
- Alternatives Evaluation
- Questions and Answers

Subreach Location Map

Cobble Reach: Elm Street to Dawes Avenue

Site Investigation Activities Sediment Sampling & Probing

Site Investigation Activities Riverbank Soil Sampling

Site Investigation Activities Geotechnical Borings

Site Investigation Activities River Barge Borings

Removal Action Objectives

- Remove, treat, and/or manage river sediments and riverbank soils to prevent human and ecological exposures exceeding risk-based levels
- Prevent recontamination and downstream migration of contamination
- Minimize impacts on wetlands and floodplains
- Enhance habitat

PCB Cleanup Criteria

Sediment

- The cleanup objective is to prevent human and ecological exposure
- 1 ppm is the guideline for removal
- Riverbank Soil
 - For residential properties, the cleanup criterion is 2 ppm
 - For non-residential properties, the cleanup criterion is 10 ppm

Removal Goals

- Maintain riverbank stability
- Meet cleanup criteria
- Control erosion
- Maintain extent of property at top of riverbank
- Maintain river channel capacity

Estimated Mean PCB Concentrations in Sediments

All Depths

0 to 1 ft

1 to 2 ft

2 to 3 ft

3 to 4 ft

> 4 ft

19.8 ppm

25.7 ppm

33.2 ppm

9.4 ppm

1.2 ppm

1.8 ppm

Sediment Excavation Depth to Achieve Cleanup Criteria

- 2 to 3 ft depth for majority of EE/CA Reach
- 3.5 ft depth for small section at confluence of East and West Branches of the Housatonic River

Riverbank Excavation Depth to Achieve Cleanup Criteria

- 3 ft depth on residential properties
- 1 to 3 ft depth on non-residential properties

Estimated Removal Quantities

Sediments

43,200 cy

Riverbanks

46,500 cy

Total Quantity

89,700 cy

Development of Removal Action Alternatives

Removal and River Diversion Technology Evaluation

Disposal/
Treatment
Technology
Evaluation

Restoration Technology Evaluation

Removal Action Alternative

EE/CA Screening Criteria

- Effectiveness
- Implementability
- Cost

Removal and River Diversion Technologies

- Wet Excavation (no diversion)
- Dredging (no diversion)
- Dry Excavation
 - Diversion by sheetpiling
 - Diversion by bypass pumping or gravity
 - Diversion by alternate channel

Dredging

Gravity Bypass

Alternate Channel

Removal Alternative 1: Wet Excavation

- No river diversion
- Dig using excavators from work pad in river or on bank
- Engineering controls required to mitigate/control resuspension
- Estimated excavation rate: 150 cy/day (sediment)
- Excavation/backfill control issues
- Access mainly from river
- Estimated removal/restoration cost = \$18.8M

Removal Alternative 1: Wet Excavation

Removal Alternative 2: Dry Excavation with Sheetpiling and Pumping Bypass

- River diversion by sheetpile walls or pumping bypass pipe(s) in cobble reach
- Dewatering of excavation cells required
- Resuspension an issue during installation/ removal of sheets and if overtopping occurs
- Good excavation/backfill control
- Estimated excavation rate: 250 cy/day (sediment)
- Significant riverbank access required
- Estimated removal/restoration cost = \$25.5M

Removal Alternative 2: Dry Excavation with Sheetpiling and Pumping Bypass

Removal Alternative 3: Dry Excavation with Pumping Bypass

- River diversion by pumping river water through pipe on bank
- Dewatering of excavation areas required
- Periodic flooding of excavation area likely
- Good excavation/backfill control
- Estimated excavation rate: 300 cy/day (sediment)
- Riverbank access needs less than sheetpiling
- Estimated removal/restoration cost = \$23.1M

Pumping Bypass: Dike Across River

Pumping Bypass: Diversion Pipeline

Pumping Bypass: Discharge at End of Diversion

Treatment/Containment/ Disposal Technologies

- Capping
- Thermal Desorption
- Solvent Extraction
- Incineration
- Soil Washing
- On-Site Consolidation at GE
- Off-Site Disposal

Disposal/Treatment Option A: Consolidation at GE with Excess Disposed Off-Site

- The Consent Decree allows consolidation of 50,000 cy at GE; the remaining material goes off-site
- Effectively isolates PCBs
- Estimated disposal cost = \$12.4M
- If all material is consolidated at GE, estimated disposal cost = \$1.1M

Disposal/Treatment Option B: Disposal of All Material Off-Site

- Proven method
- Combination of disposal sites
 - Solid Waste Landfill
 - RCRA C Landfill
 - TSCA Landfill
- Estimated disposal cost = \$27.4M

Disposal/Treatment Option C: Thermal Desorption Treatment with Off-Site Disposal of Treated Material

- Requires suitable on-site treatment area
- Requires monitoring of emissions
- Reduces volume of PCB-contaminated soils and sediments
- Produces concentrated PCB waste
- Estimated disposal/treatment cost
 - = \$50.5M

Thermal Desorption Treatment

Disposal/Treatment Option D: Solvent Extraction Treatment with Off-Site Disposal of Treated Material

- Requires extensive setup and work area; relatively complicated process
- Requires monitoring of emissions
- Reduces volume of PCBs in soils and sediments
- Solvents must be managed
- Estimated disposal/treatment cost
 - = \$41.3M

Solvent Extraction

Riverbed Restoration Plan

- Same for all alternatives
- Placement of stable riverbed backfill
- Create habitat diversity where feasible (different stone sizes, boulders)
- Use of deflectors, rock spurs, weirs

Riverbed Restoration Habitat Diversity

Riverbank Restoration

- Same for all alternatives
- Restoration begins where riverbed erosion protection materials end (2-year storm height)
- Revegetation
- Bioengineering
- Hard structures

Riverbank Restoration: Rock Armor and Vegetation

Riverbank Restoration: Rock Armor and Vegetation After Construction

Riverbank Restoration: Bioengineering During Construction

Riverbank Restoration: Bioengineering with Dormant Willow Stakes

Riverbank Restoration: Bioengineering After Stakes Sprout

Riverbank Restoration: Hard Structures

Alternative Cost Ranges

Removal Alternatives	\$18.8M - \$25.5M
Disposal/Treatment Options	\$1.1M - \$50.5M
Overall Cost Range	\$19.9M - \$76.0M

What's Next?

Remedy Review Board

Finalize EE/CA with Recommended Alternative

Public Review and Comment

Action Memo

Questions & Answers

